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Overview

• Overview of current system

• Shortcomings

• Kernel changes

– Design review of DRM changes

– Other kernel changes

• External interfaces

– Memory management

– Output control & mode setting

• Status

• Future work
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Current Players

• vgacon

– relies on standard VGA registers

– typically used on PCs from boot time until X starts

• fb layer

– has specific device drivers for many devices

– needed for platforms that don’t boot in VGA mode

– provides fbcon console driver

• userspace drivers

– e.g. X, DirectFB

– provide full access to hardware features

• DRM+X+Mesa combo provides full 3D acceleration, video 
playback, etc.
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Current Architecture

kernel fb layer

Mesa drivers

graphics hardware

DirectFB/fb apps

fb ioctls

DRM

X drivers

user/kernel boundary

blt, solid,
etc. ops
mode
setting

GLX info (clipping, windows, etc.)

DMA, mmap,
interrupts,

interrupts, DMA PCI, AGP functions blt ops, mode setting
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Shortcomings

• layers missing functionality
– fbcon accelerated, but fb doesn’t export accelerated API to 

applications

– DirectFB available, but not as featureful as X+Mesa combo

• some stacks heavyweight
– DRM+X+Mesa is a fairly large chunk of code

• duplication of functionality
– fb and X provide mode setting

– DirectFB and X provide acceleration

– memory management fragmented and ad hoc

• missing features
– suspend/resume only available in some fb configurations

– often conflicts with DRM if used
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Requirements

• Desired features

– full device functionality (3D, video playback, output control, etc.)

– fast, reliable suspend/resume

– debug support (i.e. panic/oops on screen)

– harmonization of various kernel and user level drivers (i.e. better 
sharing)

– X independence

• DRM+X+Mesa provide most complete set of functionality

– good place to centralize other code like mode setting, memory 
management

• Want to retain compatibility with other systems (e.g. fb
applications using existing fb ioctls)
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DRM Additions

• Mode setting

– Stolen from X.Org’s RandR 1.2 implementation

• Keith and Eric made this really easy

• DRM core inherits core structures, management

• Intel DRM driver gets output and CRTC control code

• Suspend/resume

• Panic/oops support

• External APIs

– mode setting

– output control

– memory management
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Enhanced Architecture

kernel

Mesa drivers

graphics hardware

DirectFB/fb apps

fb ioctls

DRM

X drivers

user/kernel boundary

blt, solid,
etc. ops

GLX info (clipping, windows, etc.)

DMA, mmap,
interrupts,

mode setting

interrupts, DMA,
mode setting PCI, AGP functions

fb compat

blt ops, mode setting
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Basic Structures for Output Control

• Top level GPU configuration object

– list of available CRTCs, outputs, framebuffers, and user added modes

• CRTC (CRT controller, historical anachronism) object

– current mode

– associated framebuffer

– x, y offsets into framebuffer

• Output object for each available output

– probed modes (if any)

– information about attached display (if any)

– user added modes

• Framebuffer(s)

– size, offset into graphics memory, etc.

– associated buffer object from memory manager
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New Initialization Requirements

• Past initialization was driven by X drivers, but to setup necessary 
structures, driver has to initialize itself

– discover graphics devices

– map registers

– set up initial device communication (e.g. command ring buffer)

– set up memory manager

– discover and enumerate available CRTCs

– discover and enumerate available outputs

– probe outputs for attached displays, gather display and mode availability 
information

– set up initial GPU configuration (e.g. initial mode) if needed

• Low level driver updates required to accommodate new initialization 
requirements
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Legacy Concerns

• New initialization, memory management, etc. raises compatibility
concerns

– old X running on new system may clobber memory layout

– mode setting done by both layers may conflict

– trying to perform initialization from both X and DRM driver may cause 
problems

• So, give distributions choice

– enable new style driver setup when their userspace is ready

– compile time flag to control whether driver will be fully backwards 
compatible or only available to updated applications

– default is fully backward compatible to avoid problems

– per-DRM driver flag controls new behavior



1/24/2008 Enhancing Linux Graphics13

Other Kernel Internals

• New initialization means low level DRM driver can bind to DRM 
device

– can provide suspend/resume methods

– should make suspend/resume fast and reliable

• Panic/oops support

– new KD_KERNEL_GRAPHICS mode required

– DRM sets KD_KERNEL_GRAPHICS when mode set call occurs

– kernel can output panic/oops text over currently running graphical 
application

– alternately, kernel could set new mode (more risky) and display output
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External Interfaces

• Memory management

– need memory object allocation/map/free API

– also need ref/unref and pinning for scanout buffers

• Output control

– get GPU configuration

– set CRTC<->output mappings

– adjust properties like backlight brightness

• Mode setting

– once configuration is gathered, modes can be set

– ability to modify existing mode list

• needed to work around bad EDID data

• desirable for configurations where mode data may not be available (e.g. 
embedded systems)
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Status

• Core routines in place
– DRM code based on X RandR 1.2 has been added

– low level drivers can call new functions as CRTCs, outputs, etc.
are added

– DDC probing and EDID parsing code available to build initial mode 
list, gather display info

• External APIs prototyped
– memory management nearing completion

– output control, mode setting ioctls available

• split into control/user nodes for security reasons

• Some applications already developed
– mobile devices using new code

– embedded kiosk type applications also in use
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Future Work

• Much yet to be done
– DRM core needs refactoring

• both old and new style drivers must be supported
– Panic/oops support yet to be added

• should be straightforward to code new KD_KERNEL_GRAPHICS code, 
add to compatible fbcon code

– External interfaces need work
• memory management should be ready
• output control and mode setting in good shape, but DDX drivers still 
need porting as final sanity check

– Drivers need porting
• i915 and radeon drivers ported at this point
• interest shown in nouveau and other drivers

– Applications
• X drivers need to be aware of new architecture
• DirectFB can use new system
• standalone Mesa could be developed further
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Open Research Questions

• Further driver consolidation?

– Call 2D operations (blt, solid fill, etc.) be consolidated in Mesa?

– Would centralize most graphics functionality in kernel (interrupts, 
DMA, mode setting) + Mesa (complex operations like 3D, 2D) 
combination

– Mesa overhead may be too high, architecture may need changes

– See Glucose project

• Better kernel integration?

– Can we schedule DMA better in the kernel DRM driver?

– Is making the CPU scheduler aware of GPU activity a good idea?

– Move mouse control (pointer movement, cusor update) into 
kernel for better user experience?




